A family of non-stationary subdivision schemes reproducing exponential polynomials
نویسندگان
چکیده
منابع مشابه
Stationary subdivision schemes reproducing polynomials
A new class of subdivision schemes is presented. Each scheme in this class reproduces polynomials up to a certain degree. We find that these schemes extend and unify not only the well-known Deslauriers–Dubuc interpolatory scheme but the quadratic and cubic B-spline schemes. This paper analyze their convergence, smoothness and accuracy. It is proved that the proposed schemes provide at least the...
متن کاملExponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines
One of the important capabilities for a subdivision scheme is the reproducing property of circular shapes or parts of conics that are important analytical shapes in geometrical modelling. In this regards, the first goal of this study is to provide necessary and sufficient conditions for a non-stationary subdivision to have the reproducing property of exponential polynomials. The result in fact ...
متن کاملReproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new sche...
متن کاملA New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials
We present a new class of non-stationary, interpolatory subdivision schemes that can exactly reconstruct parametric surfaces including exponential polynomials. The subdivision rules in our scheme are interpolatory and are obtained using the property of reproducing exponential polynomials which constitute a shift-invariant space. It enables our scheme to exactly reproduce rotational features in ...
متن کاملBeyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials
The main goal of this paper is to present some generalizations of polynomial B-splines, which include exponential B-splines and the larger family of exponential pseudo-splines. We especially focus on their connections to subdivision schemes. In addition, we generalize a well-known result on the approximation order of exponential pseudo-splines, providing conditions to establish the approximatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2013
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.01.026